标题:
世界名画中的数学
[打印本页]
作者:
gordon813
时间:
2013-10-16 18:46
标题:
世界名画中的数学
世界名画中的数学
大名鼎鼎的杨振宁出书,封面不是金光闪闪的诺贝尔奖章,也不是他与爱因斯坦的合影,而是一张看上去让人眼晕的画作。
在这本名为《基本粒子发现简史》的封面上,黑色骑马人排成一排,由左向右,而在空隙所镶嵌的背景里,又有一排白色骑马人,从右向左,黑与白相反相成。
1957年,杨振宁和李政道因发现在基本粒子的弱相互作用中的宇称不守恒定律,获得当年的诺贝尔物理学奖。在物理学中对于基本粒子的对称性在不同的能量境界有“对称”或者“破缺”的论述,这幅名叫《骑士》的画作,与这种对称性的结构对应论相吻合,作者是自称“图形艺术家”的埃舍尔。
“他是一个将艺术与科学融合的画家。”杨振宁评价说。在同济大学数学教授梁进的眼里,荷兰人埃舍尔是将绘画与数学结合最完美的艺术家之一。他创作的版画被许多科学著作和杂志用作封面,1954年的“国际数学协会”甚至在阿姆斯特丹专门为他举办了个人画展。
埃舍尔打破了数学与艺术之间的藩篱——这也是梁进试图要做的事情。不同于画家将科学与艺术糅在作品里,梁进是要寻找“艺术背后数学的影子”。
在系列博文《世界名画中的数学》中,梁进向读者展示世界名画中的数学。当人们沉浸于蒙娜丽莎神秘的微笑时,梁进指出其中的三角结构;当观众试图解析《最后的晚餐》中人物心理状态时,梁进发现其中利用两边的矩形通过梯度实现透视的效果;当世人惊叹于塞尚静物写生的轮廓之妙时,梁进看到了稳态平衡和不稳态平衡的相互转换。
在她看来,顶着画家、解剖学家、生物学家、哲学家等多个头衔的达芬奇,可谓将艺术与科学在画布上完美结合的“执牛耳者”。
尤其是在作品《维特鲁威人》中,男子摆出的双脚并拢、双臂水平和双腿跨开、胳膊举高的两种姿势,解释了人体的几何密码。这幅画在畅销书《达芬奇密码》中被当成了第一个密码:巴黎卢浮宫博物馆馆长临死前所摆放的正是这副画中的第二个姿势。
在欧洲留学的10多年里,梁进每到一座城市,博物馆是必去之地。今年6月,梁进借在马德里转机的空,一口气跑了几个博物馆。当时索菲亚王妃艺术中心正在举办达利画展,入馆参观的人在门口排了两圈,怕赶不上飞机,她直接秀出机票,才得以优先入门参观。
在这位超现实主义画家的名作《记忆的久恒》中,梁进看到的是数学概念中的“映射理论”。画中三个分别挂在树上、披在怪物上和搭在桌上的弯曲的时钟,是永恒的时间映射在人记忆中的各种方式:时间的倒流、伸缩和转折。她话锋一转,这又与爱因斯坦的相对论所指出的空间是弯曲的,有异曲同工之妙。
画作中的映射概念,是梁进从郑板桥的竹子中发现的。这位大画家的传世名作用数学语言可以一言以蔽之:在郑板桥给出的客观、主观和模型三个空间里,通过对象(竹)在这三个空间中的关系(函数),建立起这些对象的联系(映射)。
“不少人认为艺术与数学分属于左右脑,似乎风马牛不相及,其实它们是相通的,”梁进告诉中国青年报记者,“科学和艺术,在哲学的高度殊途同归。”
打破这道藩篱,再去欣赏中国写意画和西洋印象派作品,你会有别样的感触。“印象派最成功之处是将画家的感觉融进了画布,通过感觉映射,建立了一个和观众交流的情感桥梁。”梁进如此理解。比如莫奈画笔下的睡莲,就是透过光与色,找到了睡莲的状态和人的情绪之间的映射。
提及世界名画中的数学之美,这个数学老师谦虚地说:“艺术的水太深了,我只是个在浅水滩玩耍的孩子,想用自己手中的并不强大的数学勺舀上一瓢。”
欢迎光临 (http://zasq.net/~zazww/)
Powered by Discuz! X3.2