为了进一步证明这种数字组合的必要性,我们还需要说明,任意不符合上述条件的族群都无法避免被单一化的命运。我们用 a,b,c 分别代表变色龙的三种性别;a,b 和 c 则代表对应的个体数量值。如果这三个数字无法形成 0、1、2 这样完整的模数集合,那么其中至少得有两个属于同一类——比如说,a 和 b 对 3 取模得到的模数是相同的。这时,a 和 b 有可能相等,也有可能相差了 3 的倍数,总之,两者之差能被 3 整除,也就是(b-a)属于 P3。现在假设 a 小于等于 b(a≤b),那么,性别 a 和性别 b 不断相遇发生变色后,终有一天 a 会等于 0。如果 a=b,那么性别单一化就完成了,族群中只剩下了性别 c 的变色龙;如果 a<b,那么这时,三种性别的变色龙数目就分别是 A=0,B=b-a,C=c+2a。
接下来让我们考虑这样一组“相遇三部曲”:b 和 c 相遇,a 和 b 相遇,a 和 b 相遇。b 和 c的相遇可以使 a 的数目增加 2,而这两条性别 a 的变色龙就能发生接下来的两次相遇变色。在 b 和 c 相遇后,a,b,c 三种变色龙数目分别是 2,B-1 和 C-1;第一次的 a、b 相遇发生后,数目变为 1, B-2 和 C+1;第二次 a 和 b 相遇后,三部曲的最终结果就变成了 0,B-3,C+3 。在这个过程中,两条性别 a 的变色龙就好比是物理中的虚粒子:从虚无中产生,完成使命后又“化为乌有”。如果这个三部曲一直循环进行下去的话,性别 b 的变色龙数目总会等于 0(上一段提到过,B属于 P3)。看吧,种族性别单一化的大业成功了!
我们可以简单地将动物的健康状况 f 定义为它所繁育的成年后代的数量。基本上这个物种的下一代个体总数等于现有数目乘以 f 。经历 n 代以后的种群数量就是一代接着一代的连乘积,其中 f 取决于每一代的具体条件。的确在大多数情况下,和有性生物相比,无性生物都会有一个很高的 f 值。不过对两者而言,f 值都仅会因为极端灾难而下降。但真正会危及无性生物的是,它的 f 值有可能会变成 0 。当那样的事情发生时,砰!一击全倒。